Asymptotically Optimal Amplifiers for the Moran Process

نویسندگان

  • Leslie Ann Goldberg
  • John Lapinskas
  • Johannes Lengler
  • Florian Meier
  • Konstantinos Panagiotou
  • Pascal Pfister
چکیده

We study the Moran process as adapted by Lieberman, Hauert and Nowak. A family of directed graphs is said to be strongly amplifying if the extinction probability tends to 0 when the Moran process is run on graphs in this family. The most-amplifying known family of directed graphs is the family of megastars of Galanis et al. We show that this family is optimal, up to logarithmic factors, since every strongly connected n-vertex digraph has extinction probability Ω(n). Next, we show that there is an infinite family of undirected graphs, called dense incubators, whose extinction probability is O(n). We show that this is optimal, up to constant factors. Finally, we introduce sparse incubators, for varying edge density, and show that the extinction probability of these graphs is O(n/m), where m is the number of edges. Again, we show that this is optimal, up to constant factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amplifiers and Suppressors of Selection for the Moran Process on Undirected Graphs

We consider the classic Moran process modeling the spread of genetic mutations, as extended to structured populations by Lieberman et al. (Nature, 2005). In this process, individuals are the vertices of a connected graph G. Initially, there is a single mutant vertex, chosen uniformly at random. In each step, a random vertex is selected for reproduction with a probability proportional to its fit...

متن کامل

Convergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings

The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.

متن کامل

A Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers

With the advancement of nanoscale semiconductor technology,semiconductor optical amplifiers are used to amplify and process all-optical signals. Inthis paper, with the aim of calculating the gain of quantum dot semiconductor opticalamplifier (QD-SOA), two groups of rate equations and the optical signal propagatingequation are used in the active layer of the device. For t...

متن کامل

Implicit iteration approximation for a‎ ‎finite family of asymptotically quasi-pseudocontractive type‎ ‎mappings

In this paper‎, ‎strong convergence theorems of Ishikawa type implicit iteration‎ ‎process with errors for a finite family of asymptotically‎ ‎nonexpansive in the intermediate sense and asymptotically‎ ‎quasi-pseudocontractive type mappings in normed linear spaces are‎ ‎established by using a new analytical method‎, ‎which essentially‎ ‎improve and extend some recent results obtained by Yang‎ ‎...

متن کامل

Strong and $Delta$-convergence theorems for total asymptotically nonexpansive mappings in CAT(0)

In this work we use the Noor iteration process for total asymptotically nonexpansive mapping to establish the strong and $Delta$-convergence theorems in the framework of CAT(0) spaces. By doing this, some of the results existing in the current literature  generalize, unify and extend.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.04209  شماره 

صفحات  -

تاریخ انتشار 2016